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AN ADVANCED THERMOELECTRIC 
LIFE TEST AND EVALUATION STUDY 

(Phase 11) 

A test apparatus has been designed and fabricated for the 

performance of thermoelectric couple life tests and efficiency measure- 

ments at constant thermal input power. Particular emphasis was placed 

on the development of the thermal insulation system in order to limit 

parasitic heat losses from the heat source to less than-15 percent, 

hence, simulating operating conditions typical of radioisotope-fueled 

thermoelectric generators. 

The apparatus described has been used to measure the energy- 

conversion efficiency of Si&-PbTe segmented thermoelectric couples 

operating at cold- and hot-junction temperatures of 325 K (52 C) and 

1200 K (927 C), respectively. The results of these measurements indicate 

that SiGe-PbTe segmented couples operating in this range are capable of 

conversion efficiencies of up to 9.8 percent, a significant improvement 

over either of these two thermoelectric materials operating individually. 

INTRODUCTION 

Thermoelectric materials are a special class of highly doped 

semiconductors which have been optimized for the efficient conversion 

of thermal energy into electrical energy. The semiconducting materials 

suitable for use in thermoelectric energy-conversion devices must possess 

(1) a high thermoelectric power (Seebeck coefficient) and electrical con- 

ductivity, (2) a low thermal conductivity, and ( 3 )  a high degree of 

stability while operating at elevated temperatures (500 to 1000 C). 
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The experience of both system contractors and experimental 

investigators has indicated the need for uniform procedures for tests 

and measurements of thermoelectric materials and components. The 

standardization of the procedures for the measurement of output power 

stability (i.e., life testing) and energy-conversion efficiency is 

especially important since the performance data derived from these 

tests are the basis for the design, development, and fabrication of 

systems employing thermoelectric converters. A detailed examination 

of life-testing and efficiency-measurement techniques was conducted 

and from which it was concluded that (1) life testing should be per- 

formed under conditions of constant or controlled thermal input power 

(in contrast to constant hot- and cold-junction temperatures) in order 

that the test data reflect changes in the thermal conductance of the 

thermoelectric couples and (2) conversion-efficiency measurements 

accurate to within -7 percent may be performed using calibrated heat- 

flux transducers, hence, eliminating the necessity for complicated heat 

meters and their associated thermal guarding. 

Prior thermoelectric couple life-testing techniques, which 

evaluated electrical output power as a function of time at constant hot- 

and cold-junction temperatures, were, by design, insensitive to changes 

in the thermal conductance of the test specimen. These changes in 

thermal conductance are related to changes in the "effective" dopant 

concentration of the semiconducting materials which often result from 

(1) loss of dopant by sublimation, (2)  redistribution of dopant due to 

thermal diffusion, and (3) chemical reaction of the dopant and/or semi- 

conductor with contaminants present in the environment of the thermo- 

electric materials. 
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An example of t h e  importance of monitor ing t h e  thermal conductance 

of t he rmoe lec t r i c  couples  i s  provided by comparing t h e  output-power s t a b i l i t y  

of couples  con ta in ing  3p-PbSnTe under cond i t ions  of f ixed  o p e r a t i n g  tempera- 

t u r e s  o r  f ixed  thermal  inpu t  power. S p e c i f i c a l l y ,  couples  con ta in ing  3p- 

PbSnTe elements  e x h i b i t ,  under cond i t ions  of cons t an t  h o t -  and co ld - junc t ion  

temperature (1) a d e c r e a s i n g  Seebeck vo l t age  and e lec t r ica l  r e s i s t i v i t y  and 

(2) a s t a b l e  output  power. Subsequent s t u d i e s  of t h e  r e l a t i o n s h i p  between 
* 

t h e  e l e c t r i c a l  and thermal  p r o p e r t i e s  of semiconductors undergoing degrada- 

t i o n  revea led  t h a t  t h e  observed changes i n  t h e  Seebeck vo l t age  and e lectr ical  

r e s i s t i v i t y  were a t t ended  by s i g n i f i c a n t  changes i n  t h e  thermal  conduc t iv i ty .  

Hence, under cond i t ions  of f ixed  thermal  inpu t  power, couples  con ta in ing  

3p-PbSnTe would exper ience  (1) a dec reas ing  ho t - junc t ion  temperature ,  (2) a 

cons t an t  co ld - junc t ion  temperature ,  and (3) a dec reas ing  e l ec t r i ca l  output  

power. 

I n  t h e  fo l lowing  d i scuss ion ,  a t t e n t i o n  i s  focused on t h e  des ign  

and ope ra t ion  of a tes t  appara tus  which c l o s e l y  approximates cond i t ions  

e x i s t i n g  i n  a c t u a l  t he rmoe lec t r i c  generators ,  

DISCUSSION 

Design of Experimental  Apparatus 

A comprehensive s tudy  of l i f e - t e s t i n g  techniques,  i .e.,  t h e  

measurement of ou tput  power as a func t ion  of t i m e ,  w a s  performed, with 

p a r t i c u l a r  a t t e n t i o n  being given t o  t h e  a p p l i c a b i l i t y  of t h e  der ived  

* Eggers, P. E . ,  e t  al . ,  "An Advanced Thermoelec t r ic  L i f e  Test and Evalua t ion  
Study", F i n a l  Report ,  Contract  NAS5-10497 (September 28, 1968). 
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l i f e - t e s t  d a t a  t o  t h e  p r e d i c t i o n  of RTG performance. The r e s u l t s  of t h i s  

s tudy  revea led  t h a t ,  i n  genera l ,  t h e  a c q u i s i t i o n  of meaningful l i f e - t e s t  

d a t a  cannot be achieved w i t h i n  t h e  framework of convent iona l  l i f e - t e s t i n g  

techniques ,  v i z . ,  t e s t i n g  under cond i t ions  of cons t an t  h o t -  and co ld-  

j u n c t i o n  temperatures  and unknown thermal  inpu t  power. Likewise,  a s tudy  

of efficiency-measurement techniques ,  i .e. ,  t h e  measurement of t h e  r a t i o  

of  e lec t r ica l  output  power t o  t h e  thermal i n p u t  power, w a s  performed with 

p a r t i c u l a r  a t t e n t i o n  being given t o  maximizing t h e  accuracy of t h e  measure- 

ment wh i l e  minimizing t h e  complexity of t h e  technique.  The r e s u l t s  of t h i s  

s tudy  revea led  t h a t  t h e  e lec t r ica l  output  power of t he rmoe lec t r i c  couples  

ope ra t ing  a t  f i x e d  co ld-  and ho t - junc t ion  temperatures  w i l l  i n c r e a s e  wi th  

i n c r e a s i n g  p a r a s i t i c  h e a t  l o s s e s  from t h e  per iphery  of t h e  the rmoe lec t r i c  

couples ,  and t h e s e  l o s s e s  should,  t h e r e f o r e ,  be minimized. The i n c r e a s e  i n  

t h e  e lec t r ica l  output  power i s  t h e  r e s u l t  of a decrease  i n  t h e  i n t e r n a l  

r e s i s t a n c e  caused by p a r a s i t i c  heat- loss- induced changes i n  t h e  temperature  

d i s t r i b u t i o n  a long  t h e  l eng th  of t h e  the rmoe lec t r i c  couple .  Hence, minimizing 

p a r a s i t i c  thermal l o s s e s  no t  only permits  ope ra t ion  of tests under cond i t ions  

of cons t an t  thermal  inpu t  power but  a l s o  provides  measured output  power va lues  

which are realist ic i n  terms of a c t u a l  genera tor  performance. 

Thermal I n s u l a t i o n  

The performance of l i f e  tests under cond i t ions  of cons t an t  thermal  

inpu t  power r e q u i r e s  a thermal  i n s u l a t i o n  and thermal  guarding system 

(op t iona l )  which can main ta in  p a r a s i t i c  thermal  l o s s e s  from t h e  h e a t  source  

(electrical h e a t e r )  below 10 t o  15 percent  of t h e  t o t a l  i npu t  power. This 

requirement i s  p a r t i c u l a r l y  demanding s i n c e  c e r t a i n  l i f e  tests are conducted 

a t  ho t - junc t ion  temperatures  i n  excess  of 900 C. I n  convent iona l  l i f e - t e s t  
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appara tus ,  p a r a s i t i c  l o s s e s  u s u a l l y  exceed 90 percent  of t h e  thermal  inpu t  

power and, hence, any a t tempt  t o  r e g u l a t e  t h e  inpu t  e l e c t r i c a l  power t o  

t h e  h e a t e r  i s  o f f s e t  by s l i g h t  changes i n  the  thermal  conductance of t h e  

thermal i n s u l a t i o n  system. 

A two-dimensional h e a t - t r a n s f e r  a n a l y s i s  was performed and 

revea led  t h a t  t h e  d e s i r e d  thermal  i n s u l a t i o n  c a p a b i l i t y  could be achieved 

by performing t h e  tests i n  a vacuum of -10 t o r r  t o g e t h e r  wi th  the  u s e  

of (1) thermal  guard h e a t e r s  f a b r i c a t e d  by winding plat inum w i r e  (24 gage) 

on a Zr02 tube,  (2) mul t i layered  tantalum f o i l  (2 m i l s  t h i c k )  i n  the  t e m -  

p e r a t u r e  range 1200 C to-700 C ,  (3 )  mul t i l aye red  S t a i n l e s s  S t e e l  347 

f o i l  (2  m i l s  t h i c k )  i n  t h e  temperature  range below-700 C, and ( 4 )  Zr02 

powder (1-2 p diameter )  i n  t h e  c a v i t y  between t h e  hea t -source  - thermo- 

e l e c t r i c  couple - heat -s ink  assembly and the  Z r O  guard assembly (see 

-4 

2 

Figure  1). The c a l c u l a t e d  hea t  l o s s e s  f o r  a thermal  i n s u l a t i o n  system of 

t h i s  des ign  are (1)-0.3 w a t t ( t h )  from t h e  the rmoe lec t r i c  couple  (1.5 t o  

2.0 percent  o f  t h e  t o t a l  h e a t  f low through t h e  couple)  and (2) -2 w a t t s ( t h )  

loss from t h e  h e a t e r  (-10 percent  of  t h e  t o t a l  h e a t  suppl ied)  based on a 

temperature  d i s t r i b u t i o n  mismatch between t h e  thermal  guard and t h e  h e a t -  

source  - t he rmoe lec t r i c  couple  - hea t - s ink  assembly of ( 5 0  C .  

An a l t e r n a t e  approach t o  t h e  achievement of t h e s e  low l e v e l s  of 

p a r a s i t i c  hea t  l o s s e s  involves  t h e  use of t h i n  t i t a n i u m  f o i l s  ( 4 2 . 5  pm)  

s epa ra t ed  by a l t e r n a t e  l a y e r s  (2.5 pm) of  Z r O  Th i s  des ign  f e a t u r e s  

(1) a h igh  f o i l  d e n s i t y  (-100 l a y e r s  of f o i l  p e r  0.25-cm th i ckness ) ,  (2) 

* 
2' 

low-conduction h e a t  t r a n s f e r  from t h e  h o t  zone i n  t h e  l o n g i t u d i n a l  d i r e c -  

t i o n  as a r e s u l t  of t h e  use  of t h i n ,  low thermal conduc t iv i ty  metals, and 

(3)  s u f f i c i e n t l y  low thermal  conduc t iv i ty  t o  e l i m i n a t e  t h e  need f o r  an  

* Commercially a v a i l a b l e  from Thermo E lec t ron  Corporat ion,  Waltham, Massachuset ts .  



6 

FIGURE 

1 

1. LIFE-TEST EFFICIENCY APPARATUS 
(Bell-jar enc losu re  not  shown) 



Item 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

- 

7 

Legend (Figure 1) 

Description 

Epoxy bonds 

Copper load cell platen 

Aluminum load cell base 

Strain gauge, Micromeasurements, Gauge Type EP-08-125AD-120 

Water-cooled heat sinks 

Pb-Sn solder joint 

Copper cold sinks 

Copper-Constantan thermal flux transducers 

A1 0 heater base - platinum heater element 
Angular brackets 

2 3  

Upper ring 

Support studs 

Load ring 

Wire supports 

In-Sn solder joints 

Alumina thermocouple holders 

Thermal insulating powder (Zr02) 

Wing nuts 

TZM wire 

Spring load assembly 

1-3/4" OD x 1/8" wall, zirconia tube 

Tantalum (high-temperature region) multifoil thermal insulation 

Platinum heating element wires (thermal guards) 

Platinum thermocouples 

Stainless Steel 347 (low-temperature region) multifoil 
thermal insulation 
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electrically heated thermal guarding system. 

heat transfer through a thermal insulation of this design can be further 

reduced by decreasing the number of foils used fromdOO in the heater 

zone t o 2 0  in the low-temperature region of the thermal insulation as 

shown in Figure 2. 

The longitudinal conduction 

Heat Source 

A capability for long-term testing at hot-junction temperatures 

up to 1000 C, i.e., heater-element temperatures of up to 1200 C, was 

accomplished by use of a resistance heater consisting of platinum wire 

(24 gage) wound on a high-purity A 1  0 cylinder (McDanel AP-35). Dual 

windings were used in order that the countercurrent flow in each winding 

would serve to minimize magnetic-field-induced effects in the thermoelec- 

tric couple when the heater is used in conjunction with a d-c power 

supply. The heat-source - thermoelectric couple - heat-sink assembly was 
suspended from the heat-sink support using molybdenum alloy wires (TZM 

alloy) (as shown in Figure 1) in order tq(1) minimize heat losses and 

2 3  

2 (2) facilitate the positioning of the entire assembly inside the ZrO 

thermal guard cavity. 

Heat Sink 

The heat-sin, assembly contains (1) heat-flux transducers for 

monitoring heat flow through each leg of the thermoelectric couple, (2) 

load cells for monitoring spring-loading pressure applied throughout the 

test, and (3) water-cooled copper heat sink for controlling the cold- 
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I P 
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j u n c t i o n  temperature  of t h e  the rmoe lec t r i c  couple .  The h e a t - f l u x  t r a n s -  

ducers  ( suppl ied  by Heat Technology Labora to r i e s )  were f a b r i c a t e d  by 

m e t a l l u r g i c a l l y  bonding copper f o i l  (low-temperature a p p l i c a t i o n s )  or  

Chrome1 P f o i l  (high-temperature  a p p l i c a t i o n s )  t o  a 0.254-cm-thick l a y e r  

of Constantan. Operat ion of t h i s  t r ansduce r  i s  based on t h e  p r i n c i p l e  

of t h e  d i f f e r e n t i a l  thermocouple and t h e  output  vo l t age  i s  approximately 

l i n e a r  w i t h  r e s p e c t  t o  t h e  thermal  f l u x ,  i .e.,  t h e  temperature  d i f f e r e n c e  

imposed between t h e  thermocouple j u n c t i o n s  formed a t  e i t h e r  s i d e  of t h e  

t r ansduce r  (see Figure  3 ) .  These t r ansduce r s  have been i n d i v i d u a l l y  

c a l i b r a t e d  and f e a t u r e  a s e n s i t i v i t y  of d 0  yv/watt ( th) /cm2 and are 

a c c u r a t e  t o  w i t h i n  5 percent .  

C a l i b r a t i o n  Procedure 

The h e a t - f l u x  t r ansduce r s  and t h e  thermal  i n s u l a t i o n  system 

were q u a l i f i e d  by a c a l i b r a t i o n  procedure invo lv ing  t h e  use  of a 

Pyroceram 9606 "standard" whose thermal conduc t iv i ty  c l o s e l y  matches 

t h a t  of t y p i c a l  t he rmoe lec t r i c  materials., I n  a d d i t i o n ,  a second h e a t -  

f l u x  t ransducer  is used a t  the  h o t  s i d e  of t h e  Pyroceram 9606 specimen 

i n  o rde r  t o  monitor  h e a t  i npu t  as w e l l  as t h e  h e a t  ou tput  measured by 

t h e  t r ansduce r s  a t  the co ld  end of  t h e  specimen (see Figure  4).  A 

comparison of t h e  measured h e a t  input  and output  of t h e  Pyroceram 9606 

specimen y i e l d s  t h e  n e t  h e a t  loss from the  specimen. Th i s  measured 

loss ,  when a p p l i e d  as a c o r r e c t i o n  t o  t h e  c a l c u l a t e d  h e a t  f low through 

t h e  Pyroceram 9606 specimen (based on t h e  measured temperature d i f f e r e n c e  

* 

* Robinson, H. E . ,  e t  al . ,  "The Current  S t a t u s  of Thermal Conduct ivi ty  
Reference Standards a t  t h e  Nat iona l  Bureau of Standards", NBS Report 
Number 8300 (March, 1964). 
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Tabs f o r  a t tachment  
of vo l t age  t aps  

Constantan Copper o r  Chromel P 
-I 
1 

0.254 cm 
(-5 m i l s  t h i c k )  

a .  Heat-Flux Transducer 

Chromel P 

f '4 @T Constantan nv 
Chromel P c 

b. Analogue Thermocouple C i r c u i t  

F I G U R E  3. HEAT-FLUX TRANSDUCER 
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-Cold-sink extensions 

FIGURE .4. CALIBRATION STANDARD 
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a c r o s s  t h e  Pyroceram 9606 specimen and i t s  known thermal c o n d u c t i v i t y ) ,  

provides  a means f o r  c a l i b r a t i n g  the  h e a t - f l u x  t r a n s d u c e r s  a t  t h e  co ld  

s i d e  of t h e  specimen. T h i s  c a l i b r a t i o n  procedure i s  used throughout t h e  

range of h o t -  and co ld - junc t ion  temperatures  a s s o c i a t e d  wi th  t h e  thermo- 

e lectr ic  couple  tests. 

F a b r i c a t i o n  of Segmented Couples 

A t o t a l  of fou r  segmented couples  c o n t a i n i n g  SiGe and PbTe 

segments were f a b r i c a t e d  f o r  performance t e s t i n g .  The SiGe segments 

were bonded i n t o  a "U-shaped" couple  with a p-type S i G e  ho t  s t r a p  and 

tungs t en  shoes (see F igure  5).  The PbTe segments were prepared as 

s e p a r a t e  u n i t s  f o r  o p e r a t i o n  i n  p r e s s u r e  c o n t a c t  t o  t h e  tungs t en  shoes 

of t h e  SiGe couple.  

The SiGe components and tungsten shoes were bonded i n t o  a couple 

by means of gold as a b raz ing  agen t .  

technology developed i n  ear l ier  segmenting s t u d i e s  . The gold was i n c o r -  

The b r a z i n g  w a s  accomplished u s i n g  
* 

porated i n  t h e  j u n c t i o n s  i n  t h e  form of f o i l .  The assembled components 

were he ld  i n  a d i f f e r e n t i a l  thermal expansion bonding f i x t u r e  and were 

brazed i n  vacuum f o r  1/2 h r  a t  1066 C (1950 F). 

The PbTe segments were made by p r e s s i n g  PbTe powder and t h e  co ld -  

j u n c t i o n  shoe i n t o  a composite body followed by s i n t e r i n g  i n  hydrogen a t  

649 C (1200 F) f o r  1 h r  under 100-psi  s p r i n g  loading.  The n-type element 

w a s  made wi th  i r o n  shoes bonded d i r e c t l y  t o  t h e  PbTe. The p-type element 

* K o r t i e r ,  W. E. ,  Mueller, J. J., Freas ,  D. G., and Eggers, P. E . ,  
"A Research and Development Program f o r  Segmenting SiGe and PbTe 
Thermoelectr ic  Materials", NAS5-10185, F i n a l  Summary Report da t ed  
December 15, 1966. 



14 

I 

1 SiGe (p- type)  

SiGe 
( P - t Y P e )  

W 

PbTe 
(P - t Y  Pe  ) 

SnTe 
F e  

Au-braze-bonded j u n c t i o n s  

0 .030- in .  -diam. A1203 
thermocouple p r o t e c t i o n  tube 

u-braze -bonded j u n c t i o n s  

res sure -contac ted  j u n c t i o n s  

Powder m e t a l l u r g i c a l l y  bonded 

FIGURE 5. SEGMENTED COUPLE FOR PERFORMANCE TESTING 
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was made with a 1/32-in.-thick layer of tin telluride (SnTe) between the 

PbTe and iron shoe. The SnTe has been found to yield a stronger bonded 

element with lower effective contact resistivity than obtainable with 

iron bonded directly to the 2p-PbTe. 

Experimental Results 

A detailed description of the measurement procedure as well as 

the supporting equipment required for these measurements appears in 

Appendix A.  

Energy-conversion-efficiency measurements were successfully 

completed on two of the four SiGe-PbTe segmented couples. The SiGe hot 

straps on the remaining two segmented couples fractured during installa- 

tion into the test apparatus. 

used for these tests was selected based on its high-temperature capability 

The couple configuration (see Figure 5) 

(927 C)  and its potential for high-energy-conversion efficiency (-10 per- 

cent). 

nominal hot-junction and cold-junction temperature of 927 and 50 C, 

respectively. The results of these measurements are summarized in 

The energy-conversion-efficiency measurements were performed at a 

Table 1. 

The deficiency in the observed operating current, I, and conver- 

may be the result of excessive electrical contact TIE’ sion efficiency, 

resistance at the PbTe-W pressure-contacted junction (see Figure 5). Pre- 

vious experimental studies have indicated that the PbTe-W pressure-contacted 

junction has an electrical contact resistivity of only 200 to 300 pQ-cm2 at 

800 K. However, improper alignment or inadequate flatness of the adjacent 
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TABLE 1. CALCULATED AND MEASURED PARAMETERS 
FOR THE SiGe-PbTe SEGMENTED COUPLe 

Experiment a1 (a) 
Parameter Theoretical ~ Couple No. PG-69-3 Couple No. PG-69-4 

TC (K) 350 3 25 330 

TI (K) 800 8 20 8 30 

TH (K) 1200 1199 1198 

0.578 0.576 0.578 2 Ap (cm ) 
2 

Lp (SiGe) (cm) 

Lp (PbTe) (cm) 

% (SiGe) (cm) 

AN (cm 1 

% (PbTe) (4 
Thickness (hot strap) (em) 

Spring-loading pressure (psi) 

1") (amp) 

P") (watts(e)) 

('1 (percent) ~ T / E  

0.657 

2.04 

0.80 

2.02 

0.87 

0.64 

120 

7.0 

1.250 

10.9 

0.653 

2.04 

0.79 

2.03 

0.87 

0.63 

125 

5.9 

1.27 

9.8 f 0.7 

0.656 

2.01 

0.77 

1.99 

0.87 

0.64 

125 

6.1 

1.30(c) 

9.4 It 0.7 

(a) 

(b) Parameters measured after -100 hr at temperature. 

(c) 

(d) 

Hot straps of Couple Numbers PG-69-1 and PG-69-2 were broken during installation 
of couples into test apparatus. 

Corrected output power to account for Joulean power dissipation in high-resistance 
SiGe hot strap. 
See Appendix B for details of error analysis. 
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W and PbTe s u r f a c e s  can cause h igh  c o n t a c t  r e s i s t a n c e s  and, hence, may 

account f o r  t he  low va lue  of e f f i c i e n c y  observed f o r  t h e  SiGe-PbTe 

t h e r m o e l e c t r i c  couples.  P o s t t e s t  examination of t he  pressure-contacted 

j u n c t i o n s  of t h e s e  couples  suppor t s  t h i s  exp lana t ion  s i n c e  t h e r e  w a s  

evidence of only p a r t i a l  c o n t a c t  between t h e  a d j a c e n t  t ungs t en  and t h e  

n-type PbTe s u r f a c e s .  

CONCLUSIONS AND RECOMMENDATIONS 

The experimental  r e s u l t s  i n d i c a t e  t h a t  t h e  l i f e - t e s t  - e f f i c i e n c y  

appa ra tus  desc r ibed  i n  t h e  preceding d i s c u s s i o n  performed adequa te ly  a t  

h e a t e r  temperatures  up t o  1200 C.  The technique used f o r  t h e  suspension of 

t h e  heat-source - t h e r m o e l e c t r i c  couple - h e a t - s i n k  subassembly permit ted 

convenient  i n s t a l l a t i o n  and removal of test specimens wh i l e  minimizing t h e  

conduction h e a t  l o s s e s  from t h e  base o f  t h e  h e a t  source.  The thermal i n s u l a -  

t i o n  system a l s o  performed adequa te ly  with only 14 t o  18 pe rcen t  of t h e  h e a t  

supp l i ed  t o  t h e  h e a t e r  being l o s t  through t h e  thermal  i n s u l a t i o n .  Based on 

t h e  low l e v e l  of p a r a s i t i c  h e a t  loss  from t h e , h e a t e r ,  t h e  a p p a r a t u s  should 

f u n c t i o n  sat i s f ac t o r  i l y  i n  t h e  eva h a t  ion  o f  t h e r m o e l e c t r i c  performance under 

c o n d i t i o n s  similar t o  a c t u a l  r ad io i so tope - fue led  gene ra to r  ope ra t ion ,  v i z . ,  

a n e a r l y  cons t an t  thermal power i n p u t  t o  t h e  t h e r m o e l e c t r i c  couples  as a 

f u n c t i o n  of t i m e .  

The c l o s e  c o r r e l a t i o n  between c a l c u l a t e d  and expe r imen ta l ly  

de r ived  performance f o r  t h e  SiGe-PbTe segmented couple  f u r t h e r  suppor t s  

t h e  adequacy of t h i s  p re sen t  des ign  f o r  use i n  t h e  measurement of 

energy-conversion e f f i c i e n c y .  
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It is recommended that future efficiency measurements performed 

on couples containing SiGe include the use of low-resistance hot-strap 

materials (e.g., MoSi ) since -10 percent of the total electrical output 

power of the segmented couples used in these measurements was dissipated 

in the p-type SiGe hot strap. In addition, life testing should be per- 

formed in the present apparatus at typical operating temperatures in order 

to qualify the long-term stability of the apparatus, particularly, the 

thermal insulation system. Finally, it is recommended that a passive 

thermal insulation system be used (see Figure 2) in order to simplify the 

measurement apparatus and maximize the precision of measurement apparatus. 

2 

Grateful acknowledgments are due to W. E. Kortier and M. Pobereskin 

of Battelle-Columbus for their technical review of this work and also 

M. L. Paquin of Thermo Electron Corporation for his assistance in the design 

of the passive thermal insulation system. 
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APPENDIX A 

RECOMMENDED PRACTICE FOR PERFORMING 
LIFE TESTS ANT) EFFICIENCY MEASUREMENTS 

FOR THERMOELECTRIC COUPLES 

1. SCOPE 

1.1 This  method of measurement provides  a procedure f o r  determining t h e  

e lec t r ica l  ou tpu t  power and energy-conversion e f f i c i e n c y  of t h e r m o e l e c t r i c  

couples  a s  a f u n c t i o n  of t i m e  under c o n d i t i o n s  of c o n s t a n t  o r  c o n t r o l l e d  

thermal inpu t  power. The measurement technique f e a t u r e s  a s i n g l e  instrument  

accuracy of +7 percen t  f o r  couples  o p e r a t i n g  between co ld - junc t ion  temperatures  

as low as 50 C and h o t - j u n c t i o n  temperatures  as high as 1000 C.  

1 .2  Procedures a r e  o u t l i n e d  f o r  t h e  c a l i b r a t i o n  of t h e  l i f e - t e s t  - e f f i c i e n c y  

measurement-measuring appa ra tus .  

2.  SUMMARY OF METHOD 

2.1 I n  t h i s  method, t h e . l i f e  t e s t i n g  i s  performed by ma in ta in ing  t h e  

thermal i n p u t  power supp l i ed  t o  t h e  t h e r m o e l e c t r i c  couple  c o n s t a n t  and moni- 

t o r i n g  t h e  coup le ' s  h o t -  and co ld - junc t ion  temperatures ,  open- and c losed -  

c i r c u i t  v o l t a g e ,  and o p e r a t i n g  c u r r e n t  as a f u n c t i o n  of t i m e .  The couple  

ou tpu t  power s t a b i l i t y  under c o n d i t i o n s  of cons t an t  thermal inpu t  power can, 

t h u s ,  be determined from t h e s e  measurements. S i m i l a r l y ,  t h e  energy-conversion 

e f f i c i e n c y  can be determined by measuring t h e  thermal  power flowing through 

t h e  t h e r m o e l e c t r i c  couple  as w e l l  as t h e  e l e c t r i c a l  output  power of t h e  couple.  

2.2 The couple  ou tpu t  power i s  obtained from t h e  product of t h e  o p e r a t i n g  

c u r r e n t ,  I, and t h e  c l o s e d - c i r c u i t  vo l t age ,  Vcc, of t h e  couple.  

2.3 The e x t e r n a l  load f o r  t h e  l i f e  t e s t i n g  must be e s t a b l i s h e d  i n i t i a l l y  

and maintained c o n s t a n t  throughout t h e  test  per iod.  



A-2 

3 .  APPARATUS 

A diagram of the measurement apparatus is shown in Figure A-1.  

3 . 1  Specimen Preparation - The surface of the couple shall be free from 
visible defects such as cracks, pits, blisters, and gross surface oxide. 

Pressure-contacted junctions shall be assembled with the adjacent surfaces in 

intimate contact in order to insure sufficiently low electrical contact resis- 

tivity during the test. 

3 . 2  Specimen Supports - The thermoelectric couple shall be supported 

between the platinum-wound, high-purity A1 0 

ducers (see Figure A - 1 ) .  

hot-junction support insures a high degree of electrical isolation at elevated 

temperatures (-1000 C) as well as being chemically inert with respect to ther- 

moelectric materials, e.g., SiGe. 

heater and the heat-flux trans- 

The use of high-purity A1203 (McDanel AP-35) at the 

2 3  

3 . 3  Temperature Measurement - A temperature-measuring thermocouple such as 

platinum versus platinum-rhodium shall be encased in high-purity A 1  0 protection 

tubes and positioned adjacent to the junction of interest as shown in Figure A-1 .  

Preferably, the thermocouple shall be attached directly to the couple. 

the direct contact of the thermocouples with the thermoelectric specimen shall 

include only the use of materials which are known to be chemically compatible with 

the specimen at the operating temperatures. The thermocouples should be accurate 

to within k0.25 percent. Long-term stability of the thermocouples operating at 

2 3  

However, 

elevated temperatures may be improved by using platinum - 6 percent rhodium versus 

platinum - 30 percent rhodium since the resulting diffusion of rhodium from the 

thermocouple leg of higher concentration into the leg of lower concentration will 

have a less pronounced effect on the thermocouple emf of this particular thermo- 

couple than in the case of thermocouples containing unalloyed legs, e. g., "pure" 

platinum versus platinum - 10 percent rhodium. 
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3 . 4  Thermal Power Control and Measurement 

3 . 4 . 1  Suitable means shall be provided for maintaining the thermal 

input power to the thermoelectric couple constant during the period of the 

life test. This can be readily accomplished using a regulated d-c power 

supply (nominally <0.05 percent line and load regulation). The thermal power 

flow through the couple can be accurately measured by positioning heat-flux 

transducers at the cold junction of each leg of the thermoelectric couple 

(see Figure A - 1 ) .  The transducers used in the measurement of heat flux shall 

be precalibrated over the temperature range of interest and shall be accu- 
9c 

rate to within +5 percent. 

3 . 4 . 2  The measured heat flux shall be used in conjunction with the 

measured electrical output power to calculate the energy-conversion efficiency 

of the thermoelectric couple, i.e., the ratio of the electric output power and 

the thermal input power of the couple. 

3.5 Heat-Sink Temperature Control - Suitable means shall be provided for 
maintaining the thermoelectric couple cold-junction temperature constant 

(within Al.0 C) during the period of the life test. This constraint is necessary 

for the simulation of actual conditions present i; thermoelectric generators con- 

taining heat sources of constant thermal inventory. This may be accomplished by 

use of water-cooled heat sinks at the extreme end of each leg of the specimen and 

the water temperature may be maintained nearly constant by use of a water-temper- 

ature controller. 

3 .6  Load-Cell Subassemblies - Load cells shall be attached to the supports 

for both legs of the thermoelectric couple (see Figure A-1) and shall have a 

sensitivity of at least 3 psi/division as measured on strain-gage potentiometers. 

* Supplied by Heat Technology Laboratories, Huntsville, Alabama. 
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The measurement of t he  spr ing-load p res su re  app l i ed  t o  each l e g  of t h e  thermo- 

electric couple  s h a l l  b e  monitored du r ing  t h e  per iod  of t h e  l i f e  test  i n  o r d e r  

t o  d e t e c t  any changes i n  t h e  a p p l i e d  p res su re  and, t hus ,  f a c i l i t a t e  t h e  d i ag -  

n o s i s  of t h e  cause of any degrada t ion  i n  e lectr ical  output  power of t h e  t h e r -  

moe lec t r i c  couple .  

3.7 Heat Source - The hea t  source s h a l l  be designed t o  provide a long-term 

(>10,000 h r )  t e s t i n g  c a p a b i l i t y  wh i l e  ope ra t ing  i n  vacuum (<lom4 t o r r )  a t  t e m -  

p e r a t u r e s  up t o  1500 K (2240 F). 

r e s i s t a n c e  h e a t e r  c o n s i s t i n g  of plat inum w i r e  (24 gage) wound on a h igh -pur i ty  

alumina c y l i n d e r  (McDanel AP-35) .  Dual windings s h a l l  be used i n  o rde r  t h a t  

t h e  coun te rcu r ren t  f low i n  each winding w i l l  s e rve  t o  minimize magnet ic - f ie ld-  

induced e f f e c t s  i n  t h e  the rmoe lec t r i c  couple.  This  p recau t ion  i s  necessary  

when t h e  h e a t e r  i s  used i n  conjunct ion  wi th  a d-c power supply.  

This  c a p a b i l i t y  may be achieved by use of a 

3.8 Thermal I n s u l a t i o n  - The thermal i n s u l a t i o n  and o p t i o n a l  thermal  

guarding system shal l  be capable  of l i m i t i n g  p a r a s i t i c  h e a t  l o s s e s  from the 

specimen h e a t  source (see Figure  A-1)  t o  less than  15 percent  o f  t h e  t o t a l  

i n p u t  power. This  c a p a b i l i t y  may be achieved by ope ra t ing  t h e  thermal  

i n s u l a t i o n  i n  a vacuum of  t o r r  t oge the r  w i t h  t h e  u s e  of (1) thermal  

guard h e a t e r s  f a b r i c a t e d  by winding plat inum w i r e  (24 gage) on a Z r O  tube,  

(2) mul t i l aye red  tantalum f o i l  (2 m i l s  t h i c k )  i n  t h e  temperature  range 1200 C 

t o  -700 C, (3) mul t i l aye red  S t a i n l e s s  S t e e l  347 f o i l  (2 m i l s  t h i c k )  i n  t h e  

temperature  range below-700 C, and (4) Z r O  powder (1-2 p, diameter )  i n  t h e  

c a v i t y  between t h e  hea t -source  - t he rmoe lec t r i c  couple  - hea t - s ink  assembly 

and t h e  Z r O  guard assembly. The mul t i l aye red  f o i l  i n s u l a t i o n  s h a l l  be 

assembled ' in  1- t o  2-cm-high s t a g e s  (see Figure  A-1) i n  o rde r  t o  minimize 

conduct ion h e a t  t r a n s f e r  from t h e  h o t  zone i n  t h e  l o n g i t u d i n a l  d i r e c t i o n .  

2 

2 

2 
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An alternate approach to the achievement of these low levels of parasitic 

heat losses involves the use of thin titanium foils (-12.5 pm) separated by 

alternate layers (2.5 pm) of ZrO This design features (1) a high foil 

density (-100 layers of foil per 0.25-cm thickness), (2) low-conduction heat 

transfer from the hot zone in the longitudinal direction as a result of the 

* 
2' 

use of thin, low thermal conductivity metals, and (3) sufficiently low thermal 

conductivity to eliminate the need for an electrically heated thermal guarding 

system. The longitudinal conduction heat transfer through a thermal insulation 

of this design can be further reduced by decreasing the number of foils used 

from-100 in the heater zone to -40 in the low-temperature region of the thermal 

insulation as shown in Figure A-2. 

3 . 9  Electrical Measuring Apparatus - The recommended circuit to be used 
for this measurement is shown in Figure A-3 and consists of the following: 

3 . 9 . 1  Regulated d-c power supply capable of maintaining the power 

input to the specimen heat source constant to within 0.1 percent. 

3 . 9 . 2  The measurement of (1) the specimen hot-, intermediate-, and 

cold-junction temperatures, (2) the heat-source and guard-ring (optional) 

temperatures, (3 )  the open- and closed-circuit voltage of the specimen, ( 4 )  

the voltage drop across the standard resistor, and (5) the voltage drop across 

the heat-flux transducers shall be performed using an integrating digital 

voltmeter (or a comparable measuring instrument) in conjunction with a line 

conditioner having a response time of 25 to 50 microseconds which minimizes 

the effects of high-speed line transients during the measurement of low-level 

d-c voltages. This d-c-measuring instrument should have microvolt resolution 

and be accura'te to within +6 pvolts over the entire range of measurement or 

~ ~ 

* Commercially available from Thermo Electron Corporation, Waltham, Massachusetts. 
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f(O.O1 percent  of r ead ing  + 0.005 percent  of f u l l  s c a l e ) .  

i s  used, t he  e f f e c t i v e  n o i s e - r e j e c t i o n  c a p a b i l i t y  of t h e  vol tmeter  should be a t  

least 120 t o  140 db and a common mode r e j e c t i o n  of 120 db o r  more. The i n t e -  

g r a t i n g  c a p a b i l i t y  of t h e  s p e c i f i e d  d i g i t a l  vo l tme te r  (see Figure  A-3)  reduces 

I f  a d i g i t a l  vo l tme te r  

superimposed n o i s e  by averaging  ou t  t h e  random s i g n a l .  

3.9.3 A mul t ipo le  p o t e n t i a l  s e l e c t o r  switch s h a l l  be used t o  monitor t h e  

vo l t age  drops  a c r o s s  t h e  thermocouples, h e a t - f l u x  t r ansduce r s ,  s tandard  resis- 

t o r ,  and t h e  specimen. 

3.10 Hermetical ly  Sealed Enclosure - The test  appa ra tus  (see Figure  A-1) 

s h a l l  be conta ined  i n  a h e r m e t i c a l l y  sea l ed  enc losu re  (e.g. ,  b e l l - j a r  cover  

wi th  O-ring s e a l  on base p l a t e )  w i th  a t o t a l  l eak  rate of <1 x 10 -8 atm-cc/sec 

as determined by a c a l i b r a t e d  hel ium l eak  d e t e c t o r .  

3.11 Materials S e l e c t i o n  - The tes t  appa ra tus  s h a l l  be cons t ruc t ed  us ing  

only low-vapor-pressure,  low-porosi ty  materials i n  o rde r  t o  avoid contaminat ion 

of t h e  specimen with v o l a t i l e s  or entrapped gases  (air). The d i r e c t  c o n t a c t  of 

t h e  suppor t s ,  v o l t a g e  probes,  and thermocouples wi th  t h e  the rmoe lec t r i c  specimen 

s h a l l  i nc lude  only t h e  u s e  of materials which a r e  known t o  be chemical ly  com- 

p a t i b l e  wi th  t h e  specimen. 

4. MEASUREMENT PROCEDURE 
I 

4.1 The the rmoe lec t r i c  couple  s h a l l  be examined p r i o r  t o  i n s t a l l a t i o n  i n t o  

t h e  test appa ra tus  t o  i n s u r e  t h a t  i t  i s  f r e e  of g ross  s u r f a c e  oxide and imper- 

f e c t i o n s  such as b l i s t e r s  o r  p i t s  which might i n t e r f e r e  wi th  t h e  performance of 

t h e  couple .  I n  a d d i t i o n ,  t h e  ad jacen t  s u r f a c e s  a s s o c i a t e d  wi th  pressure ,contac t  

j u n c t i o n s  s h a l l  be p l ana r  and i n  c l o s e  c o n t a c t  t o  i n s u r e  low e l e c t r i c a l  c o n t a c t  

r e s i s t i v i t y .  
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4.2 The the rmoe lec t r i c  couple  s h a l l  be pos i t i oned  between t h e  two suppor ts  

w i th  a n  app l i ed  spr ing- loading  p res su re  of 100 p s i  i n  o r d e r  t o  i n s u r e  good 

e lec t r ica l  cbn tac t  a t  pressure-contac t  j unc t ions  as w e l l  as t o  i n s u r e  good 

thermal  c o n t a c t  a t  t h e  specimen - suppor t  i n t e r f a c e  (see Figure A - 1 ) .  

4.3 I n s e r t  hea t - source  - t he rmoe lec t r i c  couple  - hea t - s ink  subassembly 

(see Figure  A - 1 )  i n t o  Z r O  

>1.0 c m  exis ts  between t h e  base of t h e  h e a t  source and the base of t h e  Z r O  

c a v i t y .  The open r eg ions  of t h e  c a v i t y  surrounding t h e  i n s e r t e d  subassembly 

are next  f i l l e d  wi th  dry,  h igh -pur i ty  Z r O  powder (1 t o  2 p, diameter powder). 

Th i s  low thermal  conduc t iv i ty  powder se rves  t o  minimize p a r a s i t i c  h e a t  l o s s e s  

c a v i t y  and p o s i t i o n  subassembly such t h a t  a gap of 2 

2 

2 

from t h e  hea t -source  - t he rmoe lec t r i c  couple  - heat -s ink  subassembly as w e l l  as 

suppress ing  subl imat ion  which might o therwise  occur  i n  some the rmoe lec t r i c  

materials, e.g. ,  PbTe. 

4.4 I n s e r t  t h e  the rmoe lec t r i c  couple  and i t s  suppor t ing  tes t  f i x t u r e  i n t o  

t h e  g a s - t i g h t  enc losu re  ( spec i f i ed  i n  Sec t ion  3 . 6 ) .  The enc losu re  s h a l l  be 

evacuated t o  -10 t o r r ,  b a c k f i l l e d  wi th  i n e r t  gas (e.g., argon) ,  and reevacu- 

a t e d  t o  -10 t o r r .  This  purging procedure s h a l c b e  repea ted  several t i m e s  at 

-4 

-4 

room temperature  and a g a i n  wi th  t h e  h e a t e r  ope ra t ing  a t  -300 C t o  f a c i l i t a t e  

ou tgass ing  of the appara tus ,  p a r t i c u l a r l y  t h e  r eg ion  f i l l e d  wi th  t h e  Z r O  

powder. F i n a l l y ,  t h e  system s h a l l  be evacuated t o  < lo  t o r r  and maintained 

a t  o r  below t h i s  vacuum level throughout t h e  d u r a t i o n  of t h e  test .  

2 
-4 

4.5 The c u r r e n t  l e a d s  from t h e  h e a t e r  s h a l l  be a t t a c h e d  t o  a s u i t a b l e  

r egu la t ed  power supply.  The power inpu t  t o  t h e  h e a t e r  s h a l l  be ad jus t ed  i n  

o rde r  t o  achieve  t h e  d e s i r e d  thermal  g rad ien t  a long  t h e  the rmoe lec t r i c  couple.  

The guard h e a t e r s  (op t iona l )  s h a l l  be ad jus t ed  i n  o rde r  t o  main ta in  t h e  temper- 

a t u r e  p r o f i l e  of t h e  guard-heater  subassembly w i t h i n  25 t o  50 C of t h e  temperature  
'I 
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profile of the thermoelectric couple. This "matching" of guard heaters to 

thermoelectric couple can be achieved by attaching thermocouples to the guard- 

heater subassembly and positioning them in the plane which (1) intersects the 

heater thermocouple and hot-, intermediate-, and cold-junction thermocouples 

and (2) is perpendicular to the longitudinal axis of the thermoelectric specimen 

(see Figure A-1). 

4 . 6  All thermocouples shall be attached to appropriate compensating lead 

wires. Care should be taken to avoid (in the evacuated region) the use of 

wiring insulated by polyethylene, polyvinyl chloride, or other high-vapor- 

pressure materials. 

4.7 The specimen should remain at temperature for -100 hr before initiating 

the life test or efficiency measurements in order to establish equilibrium con- 

ditions within the junctions of the thermoelectric couple, particularly in the 

case of pressure-contacted junctions. 

4.8  Having reached equilibrium conditions, the voltages associated with the 

thermocouples, heat-flux transducers, standard resistor, and the thermoelectric 

couple are measured. 

of the thermoelectric couple shall be computed according to the following 

The electrical output power and energy-conversion efficiency 

relation : 

2 2 * Note that the relations, V cc/Rint or V o c ~  Rint), should not be used for 
computing the output power since the operating current or external load 
yielding maximum conversion efficiency are not necessarily coincident with 
that yielding maximum output power. 
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where : 
P(t) = electrical output power (in watts(e)) of thermoelectric 

couple at time, t 

Vs(t) = potential difference (in volts) across standard resistor 

at time, t 

Vcc(t) = potential difference (in volts) across thermoelectric 

couple under closed-circuit conditions at time, t 

Rs = resistance of standard resistor (in ohms) 

(t) = energy-conversion efficiency (in percent) of thermoelec- 'QT /E 
tric couple at time, t 

Qn(t), Qp(t) = heat transferred (in watts(th)) through n-leg and p-leg, 

respectively, at time, t. 

4.9 The external load resistance of the thermoelectric couple (see Figure A-3) 

shall be adjusted in order to achieve the desired couple-operating condition, e.g., 

maximum initial electrical output power, maximum initial energy-conversion effi- 

ciency, or projected maximum power or conversion efficiency at "end of life". 

further adjustments shall be made once the external resistance is established 

except for the optional "mapping" of the couple performance as a function of 

external load resistance at end-of-life conditions. 

5 .  CALIBRATION 

No 

The heat-flux transducers and the thermal insulation system shall be qualified 

by a calibration procedure involving the use of a Pyroceram 9606 "standard" or any 

other suitable thermal conductivity standard whose thermal conductivity closely 

matches that of the thermoelectric materials being tested. In this calibration 

procedure, a second heat-flux transducer is used at the hot side of the "standard" 

specimen in order to monitor heat input as well as the heat output measured by the 
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t r ansduce r s  a t  t h e  c o l d  end of t h e  specimen (see F igure  A-1) .  A comparison of 

t h e  measured h e a t  i n p u t  and output  of t h e  s t anda rd  specimen y i e l d s  t h e  n e t  

h e a t  l o s s  from t h e  specimen. T h i s  measured l o s s ,  when a p p l i e d  as a c o r r e c t i o n  

t o  t h e  c a l c u l a t e d  h e a t  flow through t h e  s t anda rd  specimen (based on t h e  measured 

temperature  d i f f e r e n c e  a c r o s s  t h e  s t anda rd  specimen and i t s  known thermal con- 

d u c t i v i t y ) ,  provides  a means f o r  c a l i b r a t i n g  t h e  h e a t - f l u x  t r ansduce r s  a t  t h e  

cold s i d e  of t h e  specimen. T h i s  c a l i b r a t i o n  procedure s h a l l  be used through t h e  

range of t h e  h o t -  and co ld - junc t ion  temperatures  a s s o c i a t e d  wi th  t h e  thermo- 

electric couple  tests. 
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FIGURE A-1. LIFE-TEST EFFICIENCY APPARATUS 

(Bell-jar enclosure not shown) 



Legend (Figure A-1) 

Item 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

- 

25 

Description 

Epoxy bonds 

Copper load cell platen 

Aluminum load cell base 

Strain gauge, Micromeasurements, Gauge Type EP-08-125AD-120 

Water-cooled heat sinks 

Pb-Sn solder joint 

Copper cold sinks 

Copper-Constantan thermal flux transducers 

A1 0 heater base - platinum heater element 
Angular brackets 

2 3  

Upper ring 

Support ' 8  tuds 

Load ring 

Wire supports 

In-Sn solder joints 

Alumina thermocouple holders * 

Thermal insulating powder (ZrO ) 2 
Wing nuts 

TZM wire 

Spring load assembly 

1-3/4" OD x 1/8" wall, zirconia tube 

Tantalum (high-temperature region) multifoil thermal insulation 

Platinum heating element wires (thermal guards) 

Platinum thermocouples 

Stainless Steel 347 (low-temperature region) multifoil 
thermal insulation 
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Heat Sink 

Thermoelectric Specimen 

Heat Source 

Evacuation Por t 

Power Supply 
(Hewlett-Packard 
Model 6267B) 

Y- Potential Switch 

-Pt-Vs-Pt-Rh Thermocouples 

I Regulated D-C 

Volta ge Regulator 

(Elgar Model 6006) 
(Hewlett-Packard 
Model 2401C) 

1 - Voltage drop across standard resistor 
2 - Voltage drop across specimen 
3 , 4  - Voltage drops across heat-flux transducers 
5-8 - Voltage drops across heater thermocouple and hot-, intermediate, and 

cold-junction thermocouples (leads not shown) 

FIGURE A-3. SCHEMATIC DIAGRAM OF LIFE-TEST - EFFICIENCY APPARATUS 



APPENDIX B 

ERROR ANALYSIS OF ENERGY-CONVERSION- 
EFFICIENCY-MEASUREMENT TECHNIQUE 



APPENDIX B 

The uncertainty limits for the energy-conversion-efficiency- 

measurement technique were calculated using simple differential calculus 

to identify the variables and their effect upon the total uncertainty of 

the measurement system. 

differential of the equation which describes the parameter being 

investigated . 

The approach is one of obtaining the total 

In the subject case, the equation for J, the energy-conversion 

efficiency, is expressed in terms of the measured parameters: 

where : 

Vs = potential difference (in volts) across standard 

resist or 

= potential difference (in volts) across thermo- vcc 
electric couple under closed-cbrcuit conditions 

Rs = resistance of standard resistor (in ohms) 

Q = heat transferred (in watts(th)) through couple. 

* 
Using a technique developed in the literature , the exact differential 
for the above equation is: 

Dq = a dVs + dVcc + a aRs dRs + dQ . 
avS avcc 

* Baird, D. C., An Introduction to Measurement Theory and Experiment Design, 
Prentice-Hall, 1962. 
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Approximating this differential equation with a finite difference equation: 

@-q = 6vcc + a 6Rs + 6Q , 
aRS 

(3 )  

where @7l represents the plus or minus value of the uncertainty limit assigned 

to the efficiency value measured. The partial differential equations listed 

below are obtained by differentiating Equation 1. 

a = ($)/Q . 
aVcc S 

vs * v 
3 L  = (  2 cc)/Q 
aRS RS 

vs v 
= (  “)/Q2 

aQ RS 
(7) 

Substituting Equations 4 through 7 into Equation 3 yields: 

The 6 values are those uncertainty values associated with the 

measurement apparatus. This uncertainty is derived from digital voltmeter 

error, standard resistor error, and heat-flow-measurement error. The 

resultant 6 values used in the computation of the uncertainty limits are 

1is.ted below for each component. 
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6 Factor Affected Component 

6VS? 6VCC Voltmeter - *6 microvolts over full range of 
measurement 

Voltmeter and standard resistor - 20.01 milliohm 
6RS 

6Q Voltmeter and heat-flux transducer - k6.5 percent 

Factoring the above values into Equation 8 yields an uncertainty 

limit of k0.67 in units of "efficiency percent" or k7.0  percent of the 

measured efficiency value. This calculation was based on the values of 

Vs, Vcc, Rs, and Q measured in this present study. However, >90 percent 

of the uncertainty in the measurement is due to that associated with the 

heat-flow measurement and, hence, the uncertainty in the total measurement 

can be approximated by the error in the heat-flow measurement alone. 


